Full Module Index
gepa_adk ¶
GEPA-ADK: Async-first evolution engine for agentic development.
This package provides domain models and utilities for evolving agent instructions using the GEPA (Generalized Evolutionary Prompt-programming Architecture) approach.
| ATTRIBUTE | DESCRIPTION |
|---|---|
__version__ | Package version from pyproject.toml. TYPE: |
EvolutionConfig | Configuration parameters for evolution runs. TYPE: |
EvolutionResult | Outcome of a completed evolution run. TYPE: |
Candidate | Instruction candidate being evolved. TYPE: |
IterationRecord | Metrics for a single evolution iteration. TYPE: |
Score | Type alias for normalized scores. TYPE: |
ComponentName | Type alias for component identifiers. TYPE: |
ModelName | Type alias for model identifiers. TYPE: |
TrajectoryConfig | Configuration for trajectory extraction. TYPE: |
EvolutionError | Base exception for all gepa-adk errors. TYPE: |
ConfigurationError | Raised when configuration validation fails. TYPE: |
AsyncGEPAAdapter | Async adapter protocol for evaluation. TYPE: |
EvaluationBatch | Evaluation results container for adapters. TYPE: |
DataInst | Type variable for adapter input instances. TYPE: |
Trajectory | Type variable for adapter traces. TYPE: |
RolloutOutput | Type variable for adapter outputs. TYPE: |
Examples:
Basic usage with configuration and candidates:
from gepa_adk import EvolutionConfig, Candidate
config = EvolutionConfig(max_iterations=10, patience=3)
candidate = Candidate(components={"instruction": "Be helpful"})
Configuring trajectory extraction:
from gepa_adk import TrajectoryConfig
trajectory_config = TrajectoryConfig(
redact_sensitive=True,
max_string_length=5000,
)
See Also
gepa_adk.domain: Core domain layer with models and types.gepa_adk.domain.models: Detailed model implementations.gepa_adk.domain.exceptions: Exception hierarchy.
Note
This is the main entry point for the gepa-adk package. Domain models are re-exported here for convenient top-level access.
DEFAULT_COMPONENT_NAME module-attribute ¶
DEFAULT_COMPONENT_NAME: ComponentName = 'instruction'
Default component name for single-component evolution.
This constant provides a single source of truth for the default component name used when evolving a single component (typically an agent's instruction). Use this constant instead of hardcoding 'instruction' throughout the codebase.
ComponentName module-attribute ¶
Name of a candidate component (e.g., 'instruction', 'output_schema').
ModelName module-attribute ¶
Model identifier (e.g., 'gemini-2.5-flash', 'gpt-4o').
AllComponentSelector ¶
Selects all available components for simultaneous update.
This selector returns the full list of components every time, enabling simultaneous evolution of all parts of the candidate.
Examples:
selector = AllComponentSelector()
all_comps = await selector.select_components(["a", "b"], 1, 0)
# Returns ["a", "b"]
Note
Always returns all components, enabling comprehensive mutations across the entire candidate in a single iteration.
Source code in src/gepa_adk/adapters/component_selector.py
select_components async ¶
Select all components to update.
| PARAMETER | DESCRIPTION |
|---|---|
components | List of available component keys. TYPE: |
iteration | Current global iteration number (unused). TYPE: |
candidate_idx | Index of the candidate being evolved (unused). TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
list[str] | List containing all component keys. |
| RAISES | DESCRIPTION |
|---|---|
ValueError | If components list is empty. |
Examples:
Note
Outputs the complete component list unchanged, enabling simultaneous evolution of all candidate parts.
Source code in src/gepa_adk/adapters/component_selector.py
RoundRobinComponentSelector ¶
Selects components in a round-robin fashion.
This selector cycles through the list of components one by one, maintaining state per candidate index to ensure consistent rotation.
| ATTRIBUTE | DESCRIPTION |
|---|---|
_next_index | Mapping of candidate_idx to next component index. TYPE: |
Examples:
selector = RoundRobinComponentSelector()
# First call selects first component
c1 = await selector.select_components(["a", "b"], 1, 0) # ["a"]
# Second call selects second component
c2 = await selector.select_components(["a", "b"], 2, 0) # ["b"]
Note
Alternates through components sequentially, ensuring balanced evolution across all candidate parts.
Source code in src/gepa_adk/adapters/component_selector.py
__init__ ¶
Initialize the round-robin selector.
Note
Creates empty index tracking dictionary for per-candidate rotation state.
select_components async ¶
Select a single component to update using round-robin logic.
| PARAMETER | DESCRIPTION |
|---|---|
components | List of available component keys. TYPE: |
iteration | Current global iteration number (unused by this strategy). TYPE: |
candidate_idx | Index of the candidate being evolved. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
list[str] | List containing the single selected component key. |
| RAISES | DESCRIPTION |
|---|---|
ValueError | If components list is empty. |
Examples:
Note
Outputs one component per call, advancing the rotation index for the specified candidate.
Source code in src/gepa_adk/adapters/component_selector.py
CriticOutput ¶
Bases: BaseModel
flowchart TD
gepa_adk.CriticOutput[CriticOutput]
click gepa_adk.CriticOutput href "" "gepa_adk.CriticOutput"
Advanced schema for structured critic feedback with dimensions.
This schema defines the expected JSON structure that critic agents should return when configured with output_schema. The score field is required, while other fields are optional and will be preserved in metadata.
| ATTRIBUTE | DESCRIPTION |
|---|---|
score | Score value between 0.0 and 1.0 (required). TYPE: |
feedback | Human-readable feedback text (optional). TYPE: |
dimension_scores | Per-dimension evaluation scores (optional). TYPE: |
actionable_guidance | Specific improvement suggestions (optional). TYPE: |
Examples:
Advanced critic output:
{
"score": 0.75,
"feedback": "Good response but could be more concise",
"dimension_scores": {
"accuracy": 0.9,
"clarity": 0.6,
"completeness": 0.8
},
"actionable_guidance": "Reduce response length by 30%"
}
Note
All critic agents using this schema must return structured JSON. When this schema is used as output_schema on an LlmAgent, the agent can ONLY reply and CANNOT use any tools. This is acceptable for critic agents focused on scoring.
See Also
SimpleCriticOutput: KISS schema with just score + feedback.
Source code in src/gepa_adk/adapters/critic_scorer.py
SimpleCriticOutput ¶
Bases: BaseModel
flowchart TD
gepa_adk.SimpleCriticOutput[SimpleCriticOutput]
click gepa_adk.SimpleCriticOutput href "" "gepa_adk.SimpleCriticOutput"
KISS schema for basic critic feedback.
This is the minimal schema for critic agents that only need to provide a score and text feedback. Use this for straightforward evaluation tasks where dimension breakdowns are not needed.
| ATTRIBUTE | DESCRIPTION |
|---|---|
score | Score value between 0.0 and 1.0 (required). TYPE: |
feedback | Human-readable feedback text (required). TYPE: |
Examples:
Simple critic output:
Using with LlmAgent:
from google.adk.agents import LlmAgent
from gepa_adk.adapters.critic_scorer import SimpleCriticOutput
critic = LlmAgent(
name="simple_critic",
model="gemini-2.5-flash",
instruction=SIMPLE_CRITIC_INSTRUCTION,
output_schema=SimpleCriticOutput,
)
Note
Applies to basic evaluation tasks where only a score and feedback are needed. For more detailed evaluations with dimension scores, use CriticOutput instead.
See Also
CriticOutput: Advanced schema with dimension scores and guidance.
Source code in src/gepa_adk/adapters/critic_scorer.py
Candidate dataclass ¶
Represents an instruction candidate being evolved.
Unlike GEPA's simple dict[str, str] type alias, this class provides richer state tracking for async scenarios including lineage and metadata.
| ATTRIBUTE | DESCRIPTION |
|---|---|
components | Component name to text value mapping. Common keys include 'instruction' (main agent prompt) and 'output_schema'. TYPE: |
generation | Generation number in the evolution lineage (0 = initial). TYPE: |
parent_id | ID of the parent candidate for lineage tracking (legacy field, retained for compatibility). TYPE: |
parent_ids | Multi-parent indices for merge operations. None for seed candidates, [single_idx] for mutations, [idx1, idx2] for merges. TYPE: |
metadata | Extensible metadata dict for async tracking and debugging. TYPE: |
Examples:
Creating a candidate:
from gepa_adk.domain.models import Candidate
candidate = Candidate(
components={"instruction": "Be helpful"},
generation=0,
)
print(candidate.components["instruction"]) # Be helpful
print(candidate.generation) # 0
Note
A mutable candidate representation with richer state tracking than GEPA's simple dict. Components and metadata can be modified during the evolution process. Use generation and parent_id to track lineage.
Source code in src/gepa_adk/domain/models.py
ConfigurationError ¶
Bases: EvolutionError
flowchart TD
gepa_adk.ConfigurationError[ConfigurationError]
gepa_adk.domain.exceptions.EvolutionError[EvolutionError]
gepa_adk.domain.exceptions.EvolutionError --> gepa_adk.ConfigurationError
click gepa_adk.ConfigurationError href "" "gepa_adk.ConfigurationError"
click gepa_adk.domain.exceptions.EvolutionError href "" "gepa_adk.domain.exceptions.EvolutionError"
Raised when configuration validation fails.
This exception is raised during EvolutionConfig initialization when a parameter violates its validation constraints.
| ATTRIBUTE | DESCRIPTION |
|---|---|
field | The name of the configuration field that failed validation. TYPE: |
value | The invalid value that was provided. TYPE: |
constraint | Description of the validation constraint that was violated. TYPE: |
Examples:
Creating a configuration error with context:
from gepa_adk.domain.exceptions import ConfigurationError
error = ConfigurationError(
"max_iterations must be non-negative",
field="max_iterations",
value=-5,
constraint=">= 0",
)
print(error.field, error.value, error.constraint)
# Output: max_iterations -5 >= 0
Note
Arises from user-provided invalid settings, not programming errors. Should be caught and reported with clear guidance on valid values.
Source code in src/gepa_adk/domain/exceptions.py
__init__ ¶
__init__(
message: str,
*,
field: str | None = None,
value: object = None,
constraint: str | None = None,
) -> None
Initialize ConfigurationError with context.
| PARAMETER | DESCRIPTION |
|---|---|
message | Human-readable error description. TYPE: |
field | Name of the invalid configuration field. TYPE: |
value | The invalid value provided. TYPE: |
constraint | Description of the validation constraint. TYPE: |
Note
Context fields use keyword-only syntax to ensure explicit labeling and prevent positional argument mistakes.
Source code in src/gepa_adk/domain/exceptions.py
__str__ ¶
Return string representation with context.
| RETURNS | DESCRIPTION |
|---|---|
str | Formatted error message including field and value context. |
Note
Outputs formatted error message with field and value context when available, preserving base message structure.
Source code in src/gepa_adk/domain/exceptions.py
EvolutionConfig dataclass ¶
Configuration parameters for an evolution run.
Defines the parameters that control how evolution proceeds, including iteration limits, concurrency settings, and stopping criteria.
| ATTRIBUTE | DESCRIPTION |
|---|---|
max_iterations | Maximum number of evolution iterations. 0 means just evaluate baseline without evolving. TYPE: |
max_concurrent_evals | Number of concurrent batch evaluations. Must be at least 1. TYPE: |
min_improvement_threshold | Minimum score improvement to accept a new candidate. Set to 0.0 to accept any improvement. TYPE: |
patience | Number of iterations without improvement before stopping early. Set to 0 to disable early stopping. TYPE: |
reflection_model | Model identifier for reflection/mutation operations. TYPE: |
frontier_type | Frontier tracking strategy for Pareto selection (default: INSTANCE). TYPE: |
acceptance_metric | Aggregation method for acceptance decisions on iteration evaluation batches. "sum" uses sum of scores (default, aligns with upstream GEPA). "mean" uses mean of scores (legacy behavior). TYPE: |
use_merge | Enable merge proposals for genetic crossover. Defaults to False. TYPE: |
max_merge_invocations | Maximum number of merge attempts per run. Defaults to 10. Must be non-negative. TYPE: |
reflection_prompt | Custom reflection/mutation prompt template. If provided, this template is used instead of the default when the reflection model proposes improved text. Required placeholders: - {component_text}: The current component text being evolved - {trials}: Trial data with feedback and trajectory for each test case If None or empty string, the default prompt template is used. TYPE: |
stop_callbacks | List of stopper callbacks for custom stop conditions. Each callback receives a StopperState and returns True to signal stop. Defaults to an empty list. TYPE: |
Examples:
Creating a configuration with defaults:
from gepa_adk.domain.models import EvolutionConfig
config = EvolutionConfig(max_iterations=100, patience=10)
print(config.max_iterations) # 100
print(config.reflection_model) # ollama_chat/gpt-oss:20b
Note
All numeric parameters are validated in post_init to ensure they meet their constraints. Invalid values raise ConfigurationError.
Source code in src/gepa_adk/domain/models.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | |
__post_init__ ¶
Validate configuration parameters after initialization.
| RAISES | DESCRIPTION |
|---|---|
ConfigurationError | If any parameter violates its constraints. |
Note
Operates automatically after dataclass init completes. Validates all fields and raises ConfigurationError with context on failure.
Source code in src/gepa_adk/domain/models.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | |
EvolutionError ¶
Bases: Exception
flowchart TD
gepa_adk.EvolutionError[EvolutionError]
click gepa_adk.EvolutionError href "" "gepa_adk.EvolutionError"
Base exception for all gepa-adk errors.
All custom exceptions in gepa-adk should inherit from this class to allow for unified exception handling.
Examples:
Catching evolution errors:
from gepa_adk.domain.exceptions import EvolutionError
try:
raise EvolutionError("Evolution failed unexpectedly")
except EvolutionError as e:
print(f"Caught: {e}")
# Output: Caught: Evolution failed unexpectedly
Note
Always use this base class or its subclasses for domain errors. Standard Python exceptions should still be raised for programming errors (e.g., TypeError, ValueError for developer mistakes).
Source code in src/gepa_adk/domain/exceptions.py
EvolutionResult dataclass ¶
Outcome of a completed evolution run.
Contains the final results after evolution completes, including all evolved component values, performance metrics, and full history.
| ATTRIBUTE | DESCRIPTION |
|---|---|
original_score | Starting performance score (baseline). TYPE: |
final_score | Ending performance score (best achieved). TYPE: |
evolved_components | Dictionary mapping component names to their final evolved text values. Keys include "instruction" and optionally "output_schema" or other components. Access individual components via TYPE: |
iteration_history | Chronological list of iteration records. TYPE: |
total_iterations | Number of iterations performed. TYPE: |
valset_score | Score on validation set used for acceptance decisions. None if no validation set was used. TYPE: |
trainset_score | Score on trainset used for reflection diagnostics. None if not computed. TYPE: |
objective_scores | Optional per-example multi-objective scores from the best candidate's final evaluation. None when no objective scores were tracked. Each dict maps objective name to score value. Index-aligned with evaluation batch examples. TYPE: |
Examples:
Creating and analyzing a result:
from gepa_adk.domain.models import EvolutionResult, IterationRecord
result = EvolutionResult(
original_score=0.60,
final_score=0.85,
evolved_components={"instruction": "Be helpful and concise"},
iteration_history=[],
total_iterations=10,
)
print(result.evolved_components["instruction"]) # "Be helpful and concise"
print(result.improvement) # 0.25
print(result.improved) # True
Note
As a frozen dataclass, EvolutionResult instances cannot be modified.
Source code in src/gepa_adk/domain/models.py
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | |
improvement property ¶
Calculate the score improvement from original to final.
| RETURNS | DESCRIPTION |
|---|---|
float | The difference between final_score and original_score. |
float | Positive values indicate improvement, negative indicates degradation. |
Note
Override is not needed since frozen dataclasses support properties.
improved property ¶
Check if the final score is better than the original.
| RETURNS | DESCRIPTION |
|---|---|
bool | True if final_score > original_score, False otherwise. |
Note
Only returns True for strict improvement, not equal scores.
FrontierType ¶
Bases: str, Enum
flowchart TD
gepa_adk.FrontierType[FrontierType]
click gepa_adk.FrontierType href "" "gepa_adk.FrontierType"
Supported frontier tracking strategies for Pareto selection.
Note
All four frontier types enable different Pareto dominance tracking strategies for multi-objective optimization.
Examples:
Source code in src/gepa_adk/domain/types.py
IterationRecord dataclass ¶
Captures metrics for a single evolution iteration.
This is an immutable record of what happened during one iteration of the evolution process. Records are created by the engine and stored in EvolutionResult.iteration_history.
| ATTRIBUTE | DESCRIPTION |
|---|---|
iteration_number | 1-indexed iteration number for human readability. TYPE: |
score | Score achieved in this iteration (typically in [0.0, 1.0]). TYPE: |
component_text | The component_text that was evaluated in this iteration (e.g., the instruction text for the "instruction" component). TYPE: |
evolved_component | The name of the component that was evolved in this iteration (e.g., "instruction", "output_schema"). Used for tracking which component changed in round-robin evolution strategies. TYPE: |
accepted | Whether this proposal was accepted as the new best. TYPE: |
objective_scores | Optional per-example multi-objective scores from the valset evaluation. None when adapter does not provide objective scores. Each dict maps objective name to score value. Index-aligned with evaluation batch examples. TYPE: |
Examples:
Creating an iteration record:
from gepa_adk.domain.models import IterationRecord
record = IterationRecord(
iteration_number=1,
score=0.85,
component_text="Be helpful",
evolved_component="instruction",
accepted=True,
)
print(record.score) # 0.85
print(record.evolved_component) # "instruction"
print(record.accepted) # True
Note
An immutable record that captures iteration metrics. Once created, IterationRecord instances cannot be modified, ensuring historical accuracy of the evolution trace.
Source code in src/gepa_adk/domain/models.py
MultiAgentEvolutionResult dataclass ¶
Outcome of a completed multi-agent evolution run.
Contains evolved component_text for all agents in the group, along with performance metrics and evolution history.
| ATTRIBUTE | DESCRIPTION |
|---|---|
evolved_components | Mapping of agent name to evolved component_text. TYPE: |
original_score | Starting performance score (baseline). TYPE: |
final_score | Ending performance score (best achieved). TYPE: |
primary_agent | Name of the agent whose output was used for scoring. TYPE: |
iteration_history | Chronological list of iteration records. TYPE: |
total_iterations | Number of iterations performed. TYPE: |
Examples:
Creating and analyzing a multi-agent result:
from gepa_adk.domain.models import MultiAgentEvolutionResult, IterationRecord
result = MultiAgentEvolutionResult(
evolved_components={
"generator": "Generate high-quality code",
"critic": "Review code thoroughly",
},
original_score=0.60,
final_score=0.85,
primary_agent="generator",
iteration_history=[],
total_iterations=10,
)
print(result.improvement) # 0.25
print(result.improved) # True
print(result.agent_names) # ["critic", "generator"]
Note
An immutable result container for multi-agent evolution. Once created, MultiAgentEvolutionResult instances cannot be modified. Use computed properties like improvement, improved, and agent_names to analyze results without modifying the underlying data.
Source code in src/gepa_adk/domain/models.py
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 | |
improvement property ¶
Calculate the score improvement from original to final.
| RETURNS | DESCRIPTION |
|---|---|
float | The difference between final_score and original_score. |
float | Positive values indicate improvement, negative indicates degradation. |
Note
Override is not needed since frozen dataclasses support properties.
improved property ¶
Check if the final score is better than the original.
| RETURNS | DESCRIPTION |
|---|---|
bool | True if final_score > original_score, False otherwise. |
Note
Only returns True for strict improvement, not equal scores.
agent_names property ¶
Get sorted list of evolved agent names.
| RETURNS | DESCRIPTION |
|---|---|
list[str] | Sorted list of agent names from evolved_components keys. |
Note
Outputs a new list each time, sorted alphabetically for consistent ordering regardless of insertion order.
SchemaConstraints dataclass ¶
Constraints for output schema evolution.
Controls which fields must be preserved during schema evolution, including field existence and type constraints. Used by the OutputSchemaHandler to validate proposed schema mutations.
| ATTRIBUTE | DESCRIPTION |
|---|---|
required_fields | Field names that must exist in evolved schemas. Mutations removing these fields are rejected. TYPE: |
preserve_types | Mapping of field names to allowed type(s). Mutations changing a field's type to an incompatible type are rejected. TYPE: |
Examples:
Preserve required fields only:
from gepa_adk.domain.types import SchemaConstraints
constraints = SchemaConstraints(
required_fields=("score", "feedback"),
)
Preserve required fields with type constraints:
constraints = SchemaConstraints(
required_fields=("score",),
preserve_types={
"score": (float, int), # Allow numeric types
"order_id": str, # Must stay string
},
)
Note
A frozen dataclass ensures immutability during evolution runs. Configuration is validated at evolution start.
Source code in src/gepa_adk/domain/types.py
TrajectoryConfig dataclass ¶
Configuration for trajectory extraction behavior.
Controls which components are extracted from ADK event streams, whether sensitive data should be redacted, and whether large values should be truncated.
Note
All configuration fields are immutable after instantiation, ensuring consistent extraction behavior throughout evolution.
| ATTRIBUTE | DESCRIPTION |
|---|---|
include_tool_calls | Extract tool/function call records. Defaults to True. TYPE: |
include_state_deltas | Extract session state changes. Defaults to True. TYPE: |
include_token_usage | Extract LLM token consumption metrics. Defaults to True. TYPE: |
redact_sensitive | Apply sensitive data redaction. When True, fields matching sensitive_keys will be replaced with "[REDACTED]". Defaults to True for secure-by-default behavior. TYPE: |
sensitive_keys | Field names to redact via exact match. Case-sensitive. Defaults to ("password", "api_key", "token"). TYPE: |
max_string_length | Truncate strings longer than this with a marker indicating truncation. None disables truncation. Defaults to 10000 characters. TYPE: |
Examples:
Default configuration (secure, with truncation):
Minimal configuration (tool calls only):
config = TrajectoryConfig(
include_tool_calls=True,
include_state_deltas=False,
include_token_usage=False,
redact_sensitive=False,
)
Custom sensitive keys and truncation:
config = TrajectoryConfig(
sensitive_keys=("password", "api_key", "token", "ssn"),
max_string_length=5000, # Truncate DOM/screenshots earlier
)
Disable truncation (keep full values):
Note
Redaction takes precedence over truncation. Sensitive values are replaced with "[REDACTED]" first, then truncation applies to the remaining (non-sensitive) strings.
Source code in src/gepa_adk/domain/types.py
VideoValidationError ¶
Bases: ConfigurationError
flowchart TD
gepa_adk.VideoValidationError[VideoValidationError]
gepa_adk.domain.exceptions.ConfigurationError[ConfigurationError]
gepa_adk.domain.exceptions.EvolutionError[EvolutionError]
gepa_adk.domain.exceptions.ConfigurationError --> gepa_adk.VideoValidationError
gepa_adk.domain.exceptions.EvolutionError --> gepa_adk.domain.exceptions.ConfigurationError
click gepa_adk.VideoValidationError href "" "gepa_adk.VideoValidationError"
click gepa_adk.domain.exceptions.ConfigurationError href "" "gepa_adk.domain.exceptions.ConfigurationError"
click gepa_adk.domain.exceptions.EvolutionError href "" "gepa_adk.domain.exceptions.EvolutionError"
Raised when video file validation fails.
This exception is raised during video file processing when a video file does not exist, exceeds size limits, or has an invalid MIME type.
| ATTRIBUTE | DESCRIPTION |
|---|---|
video_path | The path to the video file that failed validation. TYPE: |
field | The configuration field name (default "video"). TYPE: |
constraint | Description of the validation constraint that was violated. TYPE: |
Examples:
Raising a video validation error:
from gepa_adk.domain.exceptions import VideoValidationError
raise VideoValidationError(
"Video file not found",
video_path="/path/to/missing.mp4",
constraint="file must exist",
)
Handling video validation errors:
from gepa_adk.domain.exceptions import VideoValidationError
try:
await video_service.prepare_video_parts(["/bad/path.mp4"])
except VideoValidationError as e:
print(f"Invalid video: {e.video_path}")
print(f"Constraint violated: {e.constraint}")
Note
Arises from video file validation failures during multimodal input processing. File existence, size limits (2GB), and MIME type (video/*) are validated before loading video content.
Source code in src/gepa_adk/domain/exceptions.py
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 | |
__init__ ¶
Initialize VideoValidationError with video file context.
| PARAMETER | DESCRIPTION |
|---|---|
message | Human-readable error description. TYPE: |
video_path | The path to the video file that failed validation. TYPE: |
field | Name of the configuration field (default "video"). TYPE: |
constraint | Description of the validation constraint violated. TYPE: |
Note
Context fields use keyword-only syntax to ensure explicit labeling and prevent positional argument mistakes.
Source code in src/gepa_adk/domain/exceptions.py
__str__ ¶
Return string representation with video path context.
| RETURNS | DESCRIPTION |
|---|---|
str | Formatted error message including video_path and constraint. |
Note
Outputs formatted error message with video_path for easy identification of the problematic file in error logs.
Source code in src/gepa_adk/domain/exceptions.py
AsyncGEPAEngine ¶
Bases: Generic[DataInst, Trajectory, RolloutOutput]
flowchart TD
gepa_adk.AsyncGEPAEngine[AsyncGEPAEngine]
click gepa_adk.AsyncGEPAEngine href "" "gepa_adk.AsyncGEPAEngine"
Async evolution engine orchestrating the GEPA loop.
This engine executes the core evolution algorithm: 1. Evaluate baseline candidate 2. For each iteration until max_iterations or convergence: a. Generate reflective dataset from traces b. Propose new candidate text c. Evaluate proposal d. Accept if improves above threshold e. Record iteration 3. Return frozen EvolutionResult
| ATTRIBUTE | DESCRIPTION |
|---|---|
adapter | Implementation of AsyncGEPAAdapter protocol. TYPE: |
config | Evolution parameters. TYPE: |
Examples:
Basic usage:
from gepa_adk.engine import AsyncGEPAEngine
from gepa_adk.domain.models import EvolutionConfig, Candidate
engine = AsyncGEPAEngine(
adapter=my_adapter,
config=EvolutionConfig(max_iterations=50),
initial_candidate=Candidate(components={"instruction": "Be helpful"}),
batch=training_data,
)
result = await engine.run()
print(f"Final score: {result.final_score}")
Note
Avoid reusing engine instances after run() completes.
Source code in src/gepa_adk/engine/async_engine.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 | |
pareto_state property ¶
pareto_state: ParetoState | None
Return the current Pareto state, if initialized.
__init__ ¶
__init__(
adapter: AsyncGEPAAdapter[
DataInst, Trajectory, RolloutOutput
],
config: EvolutionConfig,
initial_candidate: Candidate,
batch: list[DataInst],
valset: list[DataInst] | None = None,
candidate_selector: CandidateSelectorProtocol
| None = None,
component_selector: ComponentSelectorProtocol
| None = None,
evaluation_policy: EvaluationPolicyProtocol
| None = None,
merge_proposer: ProposerProtocol | None = None,
) -> None
Initialize the evolution engine.
| PARAMETER | DESCRIPTION |
|---|---|
adapter | Implementation of AsyncGEPAAdapter protocol for evaluation and proposal generation. TYPE: |
config | Evolution parameters controlling iterations, thresholds, and early stopping. TYPE: |
initial_candidate | Starting candidate with 'instruction' component. TYPE: |
batch | Trainset data instances for reflection and mutation. TYPE: |
valset | Optional validation data for scoring candidates. Defaults to trainset when omitted. TYPE: |
candidate_selector | Optional selector strategy for Pareto-aware candidate sampling. TYPE: |
component_selector | Optional selector strategy for choosing which components to update. Defaults to RoundRobinComponentSelector. TYPE: |
evaluation_policy | Optional policy for selecting which validation examples to evaluate per iteration. Defaults to FullEvaluationPolicy. TYPE: |
merge_proposer | Optional proposer for merge operations. If provided and config.use_merge is True, merge proposals will be attempted after successful mutations. TYPE: |
| RAISES | DESCRIPTION |
|---|---|
ValueError | If batch is empty or initial_candidate lacks 'instruction'. |
ConfigurationError | If config validation fails (via EvolutionConfig). |
Examples:
Creating an engine:
engine = AsyncGEPAEngine(
adapter=my_adapter,
config=EvolutionConfig(max_iterations=50),
initial_candidate=Candidate(components={"instruction": "Be helpful"}),
batch=training_data,
candidate_selector=selector,
)
Note
Configures trainset and valset routing for reflection and scoring.
Source code in src/gepa_adk/engine/async_engine.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | |
run async ¶
run() -> EvolutionResult
Execute the evolution loop.
Runs the core evolution loop: 1. Evaluate baseline candidate 2. For each iteration until max_iterations or convergence: a. Generate reflective dataset from traces b. Propose new candidate text c. Evaluate proposal d. Accept if improves above threshold e. Record iteration 3. Return frozen EvolutionResult
| RETURNS | DESCRIPTION |
|---|---|
EvolutionResult | EvolutionResult containing: - original_score: Baseline score before evolution - final_score: Best score achieved - evolved_component_text: Best component_text found - iteration_history: List of IterationRecord objects - total_iterations: Number of iterations performed |
| RAISES | DESCRIPTION |
|---|---|
Exception | Any exceptions from adapter methods propagate unchanged. |
Examples:
Running evolution:
result = await engine.run()
print(f"Improved: {result.improved}")
print(f"Best score: {result.final_score}")
Note
Outputs a frozen EvolutionResult after completing the evolution loop. Engine instance should not be reused after run() completes. Method is idempotent if called multiple times (restarts fresh). Fail-fast behavior: adapter exceptions are not caught.
Source code in src/gepa_adk/engine/async_engine.py
MergeProposer ¶
Proposer that combines two Pareto-optimal candidates via genetic crossover.
Selects two candidates from the frontier that share a common ancestor, identifies which components each improved, and creates a merged candidate that combines improvements from both branches.
| ATTRIBUTE | DESCRIPTION |
|---|---|
rng | Random number generator for candidate selection. TYPE: |
val_overlap_floor | Minimum overlapping validation coverage required. TYPE: |
max_attempts | Maximum merge attempts before giving up. TYPE: |
attempted_merges | Set of attempted merge triplets to prevent duplicates. TYPE: |
Examples:
Creating a merge proposer:
proposer = MergeProposer(rng=random.Random(42))
result = await proposer.propose(state)
if result:
print(f"Merged from parents {result.parent_indices}")
Note: A proposer that combines two Pareto-optimal candidates via genetic crossover. Selects candidates from the frontier that share a common ancestor and merges their complementary component improvements.
Source code in src/gepa_adk/engine/merge_proposer.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | |
__init__ ¶
Initialize MergeProposer.
| PARAMETER | DESCRIPTION |
|---|---|
rng | Random number generator for candidate selection. TYPE: |
val_overlap_floor | Minimum overlapping validation examples required. TYPE: |
max_attempts | Maximum merge attempts before giving up. TYPE: |
Note
Creates a new MergeProposer instance with the specified random number generator and configuration parameters. The attempted_merges set is initialized empty to track merge attempts.
Source code in src/gepa_adk/engine/merge_proposer.py
propose async ¶
propose(
state: ParetoState, eval_batch: object | None = None
) -> ProposalResult | None
Attempt to merge two frontier candidates.
| PARAMETER | DESCRIPTION |
|---|---|
state | Current Pareto state with candidates, scores, and genealogy. Must contain at least 2 candidates on the Pareto frontier with a shared common ancestor for merge to succeed. TYPE: |
eval_batch | Ignored for merge proposals. Merge operations do not require evaluation batch data as they combine existing candidates. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
ProposalResult | None | ProposalResult | None: ProposalResult with merged candidate and both parent indices, |
ProposalResult | None | or None if merge not possible (e.g., no common ancestor, insufficient frontier, |
ProposalResult | None | or no complementary component changes). |
Examples:
Proposing a merge from evolution state:
proposer = MergeProposer(rng=random.Random(42))
result = await proposer.propose(state)
if result:
print(f"Merged from parents {result.parent_indices}")
print(f"Ancestor: {result.metadata['ancestor_idx']}")
Note
Operations select candidates from Pareto frontier only. Requires common ancestor and complementary component changes for successful merge. Validates minimum validation overlap before merging.
Source code in src/gepa_adk/engine/merge_proposer.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | |
AsyncGEPAAdapter ¶
Bases: Protocol[DataInst, Trajectory, RolloutOutput]
flowchart TD
gepa_adk.AsyncGEPAAdapter[AsyncGEPAAdapter]
click gepa_adk.AsyncGEPAAdapter href "" "gepa_adk.AsyncGEPAAdapter"
Protocol for async GEPA adapters used by the evolution engine.
Implementations provide evaluation, reflection dataset generation, and proposal updates for candidate component texts.
Examples:
Implement a minimal adapter:
class MyAdapter:
async def evaluate(self, batch, candidate, capture_traces=False):
return EvaluationBatch(outputs=[], scores=[])
async def make_reflective_dataset(
self, candidate, eval_batch, components_to_update
):
return {component: [] for component in components_to_update}
async def propose_new_texts(
self, candidate, reflective_dataset, components_to_update
):
return {
component: candidate[component]
for component in components_to_update
}
Note
Adapters must implement all three async methods to satisfy the protocol. Use runtime_checkable for isinstance() checks.
Source code in src/gepa_adk/ports/adapter.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | |
evaluate async ¶
evaluate(
batch: list[DataInst],
candidate: dict[str, str],
capture_traces: bool = False,
) -> EvaluationBatch[Trajectory, RolloutOutput]
Evaluate a candidate over a batch of inputs.
| PARAMETER | DESCRIPTION |
|---|---|
batch | Input data instances to evaluate. TYPE: |
candidate | Component name to text mapping. TYPE: |
capture_traces | Whether to capture execution traces. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
EvaluationBatch[Trajectory, RolloutOutput] | Evaluation results with outputs, scores, and optional traces. |
Examples:
Basic evaluation:
Note
Output and score lists must have the same length as the input batch. Set capture_traces=True to enable reflection.
Source code in src/gepa_adk/ports/adapter.py
make_reflective_dataset async ¶
make_reflective_dataset(
candidate: dict[str, str],
eval_batch: EvaluationBatch[Trajectory, RolloutOutput],
components_to_update: list[str],
) -> Mapping[str, Sequence[Mapping[str, Any]]]
Build reflective datasets from evaluation traces.
| PARAMETER | DESCRIPTION |
|---|---|
candidate | Current candidate components. TYPE: |
eval_batch | Evaluation results with traces. TYPE: |
components_to_update | Components to generate datasets for. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
Mapping[str, Sequence[Mapping[str, Any]]] | Mapping of component name to reflective examples. |
Examples:
Build datasets for specific components:
Note
Only call this method when eval_batch contains trajectories. Each component receives its own list of reflective examples.
Source code in src/gepa_adk/ports/adapter.py
propose_new_texts async ¶
propose_new_texts(
candidate: dict[str, str],
reflective_dataset: Mapping[
str, Sequence[Mapping[str, Any]]
],
components_to_update: list[str],
) -> dict[str, str]
Propose updated component texts from reflective datasets.
| PARAMETER | DESCRIPTION |
|---|---|
candidate | Current candidate components. TYPE: |
reflective_dataset | Reflective examples per component. TYPE: |
components_to_update | Components to propose updates for. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
dict[str, str] | Mapping of component name to new proposed text. |
Examples:
Generate new component texts:
Note
Outputs should contain improved text for each requested component. The evolution engine uses these as mutation candidates.
Source code in src/gepa_adk/ports/adapter.py
EvaluationBatch dataclass ¶
Bases: Generic[Trajectory, RolloutOutput]
flowchart TD
gepa_adk.EvaluationBatch[EvaluationBatch]
click gepa_adk.EvaluationBatch href "" "gepa_adk.EvaluationBatch"
Container for evaluation outputs and scores.
| ATTRIBUTE | DESCRIPTION |
|---|---|
outputs | Per-example outputs produced during evaluation. TYPE: |
scores | Per-example normalized scores (higher is better). TYPE: |
trajectories | Optional per-example execution traces. TYPE: |
objective_scores | Optional multi-objective scores per example. TYPE: |
metadata | Optional per-example scorer metadata. When provided, metadata[i] corresponds to outputs[i] and scores[i] (index-aligned). Metadata dicts may contain scorer-specific fields like 'feedback', 'actionable_guidance', or 'dimension_scores' from CriticScorer implementations. TYPE: |
inputs | Optional per-example input text that was used to generate each output. Used by make_reflective_dataset to provide context for reflection. When provided, inputs[i] corresponds to the input that produced outputs[i]. TYPE: |
Examples:
Create a batch with optional traces:
batch = EvaluationBatch(
outputs=["ok", "ok"],
scores=[0.9, 0.8],
trajectories=[{"trace": 1}, {"trace": 2}],
)
Create a batch with inputs for reflection:
batch = EvaluationBatch(
outputs=["Hello!", "Good morrow!"],
scores=[0.3, 0.9],
inputs=["I am the King", "I am your friend"],
)
Note
All fields are immutable once created due to frozen=True. Use this as the standard return type from adapter evaluations. When metadata is not None, len(metadata) must equal len(outputs) and len(scores).
Source code in src/gepa_adk/ports/adapter.py
ComponentSelectorProtocol ¶
Bases: Protocol
flowchart TD
gepa_adk.ComponentSelectorProtocol[ComponentSelectorProtocol]
click gepa_adk.ComponentSelectorProtocol href "" "gepa_adk.ComponentSelectorProtocol"
Async protocol for component selection strategies.
Note
Adapters implementing this protocol determine which candidate components to update during mutation, enabling flexible evolution strategies.
Examples:
class MySelector:
async def select_components(
self, components: list[str], iteration: int, candidate_idx: int
) -> list[str]:
return components[:1]
Source code in src/gepa_adk/ports/selector.py
select_components async ¶
Select components to update for the current iteration.
| PARAMETER | DESCRIPTION |
|---|---|
components | List of available component keys (e.g. ["instruction", "input_schema"]). TYPE: |
iteration | Current global iteration number (0-based). TYPE: |
candidate_idx | Index of the candidate being evolved. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
list[str] | List of component keys to update. |
| RAISES | DESCRIPTION |
|---|---|
ValueError | If components list is empty. |
Note
Outputs a list of component keys to update, enabling selective mutation of specific candidate components.
Examples:
selected = await selector.select_components(
components=["instruction", "schema"], iteration=1, candidate_idx=0
)
Source code in src/gepa_adk/ports/selector.py
create_component_selector ¶
create_component_selector(
selector_type: str,
) -> ComponentSelectorProtocol
Create a component selector strategy from a string alias.
| PARAMETER | DESCRIPTION |
|---|---|
selector_type | Name of the selector strategy. Supported values: - 'round_robin', 'roundrobin': Round-robin cycling. - 'all', 'all_components': All components simultaneously. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
ComponentSelectorProtocol | Instance of requested component selector. |
| RAISES | DESCRIPTION |
|---|---|
ValueError | If selector_type is unknown. |
Examples:
# Create round-robin selector
selector = create_component_selector("round_robin")
# Create all-components selector
selector = create_component_selector("all")
Note
Supports flexible string aliases with normalization for common variations (underscores, hyphens, case-insensitive).
Source code in src/gepa_adk/adapters/component_selector.py
normalize_feedback ¶
Normalize critic feedback to consistent trial format.
Converts both simple and advanced critic outputs to a standardized format for use in trial records. This enables the reflection agent to receive consistent feedback regardless of which critic schema was used.
| PARAMETER | DESCRIPTION |
|---|---|
score | The numeric score from the critic (0.0-1.0). TYPE: |
metadata | Optional metadata dict from critic output. May contain: - feedback (str): Simple feedback text - dimension_scores (dict): Per-dimension scores - actionable_guidance (str): Improvement suggestions - Any additional fields from critic output TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
dict[str, Any] | Normalized feedback dict with structure: |
dict[str, Any] | ```python |
dict[str, Any] | { "score": 0.75, "feedback_text": "Main feedback message", "dimension_scores": {...}, # Optional "actionable_guidance": "...", # Optional |
dict[str, Any] | } |
dict[str, Any] | ``` |
Examples:
Normalize simple feedback:
normalized = normalize_feedback(0.8, {"feedback": "Good job"})
# {"score": 0.8, "feedback_text": "Good job"}
Normalize advanced feedback:
normalized = normalize_feedback(
0.6,
{
"feedback": "Needs work",
"dimension_scores": {"clarity": 0.5},
"actionable_guidance": "Add examples",
},
)
# {
# "score": 0.6,
# "feedback_text": "Needs work",
# "dimension_scores": {"clarity": 0.5},
# "actionable_guidance": "Add examples",
# }
Handle missing feedback:
Note
Supports both SimpleCriticOutput and CriticOutput schemas for flexible critic integration. Extracts the "feedback" field and renames it to "feedback_text" for consistent trial structure. Additional fields like dimension_scores are preserved when present.
Source code in src/gepa_adk/adapters/critic_scorer.py
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | |
evolve async ¶
evolve(
agent: LlmAgent,
trainset: list[dict[str, Any]],
valset: list[dict[str, Any]] | None = None,
critic: LlmAgent | None = None,
reflection_agent: LlmAgent | None = None,
config: EvolutionConfig | None = None,
trajectory_config: TrajectoryConfig | None = None,
state_guard: StateGuard | None = None,
candidate_selector: CandidateSelectorProtocol
| str
| None = None,
component_selector: ComponentSelectorProtocol
| str
| None = None,
executor: AgentExecutorProtocol | None = None,
components: list[str] | None = None,
schema_constraints: SchemaConstraints | None = None,
app: App | None = None,
runner: Runner | None = None,
) -> EvolutionResult
Evolve an ADK agent's instruction.
Optimizes the instruction for a single ADK agent using evolutionary optimization. The agent's instruction is iteratively improved based on performance on the training set.
| PARAMETER | DESCRIPTION |
|---|---|
agent | The ADK LlmAgent to evolve. TYPE: |
trainset | Training examples [{"input": "...", "expected": "..."}]. TYPE: |
valset | Optional validation examples used for scoring and acceptance. Defaults to the trainset when omitted. TYPE: |
critic | Optional ADK agent for scoring (uses schema scoring if None). TYPE: |
reflection_agent | Optional ADK agent for proposals. If None, creates a default reflection agent using config.reflection_model. TYPE: |
config | Evolution configuration (uses defaults if None). TYPE: |
trajectory_config | Trajectory capture settings (uses defaults if None). TYPE: |
state_guard | Optional state token preservation settings. TYPE: |
candidate_selector | Optional selector instance or selector name. TYPE: |
component_selector | Optional selector instance or selector name for choosing which components to update. TYPE: |
executor | Optional AgentExecutorProtocol implementation for unified agent execution. When provided, both the ADKAdapter and CriticScorer use this executor for consistent session management and execution. If None, creates an AgentExecutor automatically. TYPE: |
components | List of component names to include in evolution. Supported: - "instruction": The agent's instruction text (default if None). - "output_schema": The agent's Pydantic output_schema (serialized). When None, defaults to ["instruction"]. Use ["output_schema"] with a schema reflection agent to evolve the output schema. TYPE: |
schema_constraints | Optional SchemaConstraints for output_schema evolution. When provided, proposed schema mutations are validated against these constraints. Mutations that violate constraints (e.g., remove required fields) are rejected and the original schema is preserved. TYPE: |
app | Optional ADK App instance. When provided, evolution uses the app's configuration. Note that App does not hold services directly; pass a Runner for service extraction, or combine with session_service param. See the App/Runner integration guide for details. TYPE: |
runner | Optional ADK Runner instance. When provided, evolution extracts and uses the runner's session_service for all agent executions (evolved agents, critic, and reflection agent). Takes precedence over both app and executor parameters. This enables seamless integration with existing ADK infrastructure. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
EvolutionResult | EvolutionResult with evolved_components dict and metrics. |
| RAISES | DESCRIPTION |
|---|---|
ConfigurationError | If invalid parameters provided. |
EvolutionError | If evolution fails during execution. |
Note
Single-agent evolution with trainset reflection and valset scoring.
Examples:
Basic usage with output_schema:
from pydantic import BaseModel, Field
from google.adk.agents import LlmAgent
from gepa_adk import evolve
class OutputSchema(BaseModel):
answer: str
score: float = Field(ge=0.0, le=1.0)
agent = LlmAgent(
name="assistant",
model="gemini-2.5-flash",
instruction="You are a helpful assistant.",
output_schema=OutputSchema,
)
trainset = [
{"input": "What is 2+2?", "expected": "4"},
{"input": "What is the capital of France?", "expected": "Paris"},
]
result = await evolve(agent, trainset)
print(f"Evolved: {result.evolved_components['instruction']}")
With critic agent:
from pydantic import BaseModel, Field
from google.adk.agents import LlmAgent
from gepa_adk import evolve
class CriticOutput(BaseModel):
score: float = Field(ge=0.0, le=1.0)
critic = LlmAgent(
name="critic",
model="gemini-2.5-flash",
instruction="Score the response quality.",
output_schema=CriticOutput,
)
result = await evolve(agent, trainset, critic=critic)
Evolving output_schema with schema reflection:
from gepa_adk.engine.reflection_agents import create_schema_reflection_agent
# Create schema reflection agent with validation tool
schema_reflector = create_schema_reflection_agent("gemini-2.5-flash")
# Evolve output_schema component
result = await evolve(
agent,
trainset,
critic=critic,
reflection_agent=schema_reflector,
components=["output_schema"], # Evolve schema, not instruction
)
print(f"Evolved schema: {result.evolved_components['output_schema']}")
Using App/Runner for existing infrastructure integration:
from google.adk.apps.app import App
from google.adk.runners import Runner
from google.adk.sessions import DatabaseSessionService
# Configure Runner with your production session service
session_service = DatabaseSessionService(connection_string="...")
runner = Runner(
app_name="my_app",
agent=agent,
session_service=session_service,
)
# Evolution uses your Runner's session_service for all operations
result = await evolve(
agent,
trainset,
runner=runner, # Services extracted from runner
)
Source code in src/gepa_adk/api.py
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 | |
evolve_group async ¶
evolve_group(
agents: dict[str, LlmAgent],
primary: str,
trainset: list[dict[str, Any]],
components: dict[str, list[str]] | None = None,
critic: LlmAgent | None = None,
share_session: bool = True,
config: EvolutionConfig | None = None,
state_guard: StateGuard | None = None,
component_selector: ComponentSelectorProtocol
| str
| None = None,
reflection_agent: LlmAgent | None = None,
trajectory_config: TrajectoryConfig | None = None,
workflow: SequentialAgent
| LoopAgent
| ParallelAgent
| None = None,
session_service: BaseSessionService | None = None,
app: App | None = None,
runner: Runner | None = None,
) -> MultiAgentEvolutionResult
Evolve multiple agents together with per-agent component configuration.
Optimizes specified components for each agent by targeting the primary agent's output score. When share_session=True, agents execute sequentially with shared session state, enabling later agents to access earlier agents' outputs via template strings.
| PARAMETER | DESCRIPTION |
|---|---|
agents | Named ADK agents to evolve together as dict mapping agent names to LlmAgent instances. Must have at least one agent. TYPE: |
primary | Name of the agent whose output is used for scoring. Must match one of the agent names in the dict. TYPE: |
trainset | Training examples for evaluation. Each example should have an "input" key and optionally an "expected" key. TYPE: |
components | Per-agent component configuration mapping agent names to lists of component names to evolve. If None, defaults to evolving "instruction" for all agents. Use empty list to exclude an agent from evolution. Available component names: "instruction", "output_schema", "generate_content_config". TYPE: |
critic | Optional critic agent for scoring. If None, the primary agent must have an output_schema for schema-based scoring. TYPE: |
share_session | Whether agents share session state during execution. When True (default), uses SequentialAgent. When False, agents execute with isolated sessions. TYPE: |
config | Evolution configuration. If None, uses EvolutionConfig defaults. TYPE: |
state_guard | Optional StateGuard instance for validating and repairing state injection tokens in evolved instructions. TYPE: |
component_selector | Optional selector instance or selector name for choosing which components to update. TYPE: |
reflection_agent | Optional ADK agent for proposals. If None, creates a default reflection agent using config.reflection_model. TYPE: |
trajectory_config | Trajectory capture settings (uses defaults if None). TYPE: |
workflow | Optional original workflow structure to preserve during evaluation. When provided, LoopAgent iterations and ParallelAgent concurrency are preserved instead of flattening to SequentialAgent. Used internally by evolve_workflow(); not typically set directly. TYPE: |
session_service | Optional ADK session service for state management. If None (default), creates an InMemorySessionService internally. Pass a custom service (e.g., SqliteSessionService, DatabaseSessionService) to persist sessions alongside other agent executions in a shared database. TYPE: |
app | Optional ADK App instance. When provided, evolution uses the app's configuration. Note that App does not hold services directly; pass a Runner for service extraction, or combine with session_service param. TYPE: |
runner | Optional ADK Runner instance. When provided, evolution extracts and uses the runner's session_service for all agent executions (evolved agents, critic, and reflection agent). Takes precedence over both app and session_service parameters. This enables seamless integration with existing ADK infrastructure. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
MultiAgentEvolutionResult | MultiAgentEvolutionResult containing evolved_components dict |
MultiAgentEvolutionResult | mapping qualified component names (agent.component format) to their |
MultiAgentEvolutionResult | optimized values, along with score metrics and iteration history. |
| RAISES | DESCRIPTION |
|---|---|
MultiAgentValidationError | If agents dict is empty, primary agent not found, or no scorer and primary lacks output_schema. |
ValueError | If components mapping contains unknown agents, unknown component handlers, or is missing entries for agents. |
EvolutionError | If evolution fails during execution. |
Examples:
Basic usage with per-agent components (API v0.3.x):
from google.adk.agents import LlmAgent
from gepa_adk import evolve_group
generator = LlmAgent(
name="generator",
model="gemini-2.5-flash",
instruction="Generate code based on the requirement.",
)
critic = LlmAgent(
name="critic",
model="gemini-2.5-flash",
instruction="Review the code in {generator_output}.",
)
validator = LlmAgent(
name="validator",
model="gemini-2.5-flash",
instruction="Validate the reviewed code.",
output_schema=ValidationResult,
)
result = await evolve_group(
agents={
"generator": generator,
"critic": critic,
"validator": validator,
},
primary="validator",
trainset=training_data,
components={
"generator": ["instruction", "output_schema"],
"critic": ["instruction"],
"validator": ["instruction"],
},
)
# Access evolved components using qualified names
print(result.evolved_components["generator.instruction"])
print(result.evolved_components["critic.instruction"])
print(result.evolved_components["validator.instruction"])
Exclude an agent from evolution:
result = await evolve_group(
agents={"generator": gen, "static_validator": val},
primary="generator",
trainset=training_data,
components={
"generator": ["instruction"],
"static_validator": [], # Excluded from evolution
},
)
Using custom session service for persistence:
from google.adk.sessions import SqliteSessionService
# Use SQLite for session persistence
session_service = SqliteSessionService(db_path="evolution_sessions.db")
result = await evolve_group(
agents={"generator": gen, "critic": critic},
primary="critic",
trainset=training_data,
session_service=session_service, # Sessions persisted to SQLite
)
Using App/Runner for existing infrastructure integration:
from google.adk.runners import Runner
from google.adk.sessions import DatabaseSessionService
# Configure Runner with your production session service
runner = Runner(
app_name="my_app",
agent=generator, # Any agent from the group
session_service=DatabaseSessionService(connection_string="..."),
)
# Evolution uses Runner's session_service for all operations
result = await evolve_group(
agents={"generator": gen, "refiner": ref},
primary="refiner",
trainset=training_data,
runner=runner, # Services extracted from runner
)
Note
Breaking change in v0.3.x: The agents parameter changed from list[LlmAgent] to dict[str, LlmAgent]. Candidate keys now use qualified names (agent.component) instead of {agent_name}_instruction.
Source code in src/gepa_adk/api.py
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | |
evolve_sync ¶
evolve_sync(
agent: LlmAgent,
trainset: list[dict[str, Any]],
**kwargs: Any,
) -> EvolutionResult
Synchronous wrapper for evolve().
Runs the async evolve() function in a blocking manner. Handles nested event loops automatically (Jupyter compatible).
| PARAMETER | DESCRIPTION |
|---|---|
agent | The ADK LlmAgent to evolve. TYPE: |
trainset | Training examples. TYPE: |
**kwargs | Optional keyword arguments passed to evolve(). TYPE: |
| PARAMETER | DESCRIPTION |
|---|---|
valset | Optional validation examples for held-out evaluation. TYPE: |
critic | Optional ADK agent for scoring. TYPE: |
reflection_agent | Optional ADK agent for proposals (not yet implemented). TYPE: |
config | EvolutionConfig for customizing evolution parameters. TYPE: |
trajectory_config | TrajectoryConfig for trace capture settings. TYPE: |
state_guard | Optional state token preservation settings. TYPE: |
candidate_selector | Optional selector instance or selector name. TYPE: |
executor | Optional unified agent executor for consistent session management across all agent types. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
EvolutionResult | EvolutionResult with evolved_components dict and metrics. |
| RAISES | DESCRIPTION |
|---|---|
ConfigurationError | If invalid parameters provided. |
EvolutionError | If evolution fails during execution. |
Examples:
Basic usage in a script:
from pydantic import BaseModel, Field
from google.adk.agents import LlmAgent
from gepa_adk import evolve_sync
class OutputSchema(BaseModel):
answer: str
score: float = Field(ge=0.0, le=1.0)
agent = LlmAgent(
name="assistant",
model="gemini-2.5-flash",
instruction="You are a helpful assistant.",
output_schema=OutputSchema,
)
trainset = [
{"input": "What is 2+2?", "expected": "4"},
]
result = evolve_sync(agent, trainset)
print(f"Evolved: {result.evolved_components['instruction']}")
With configuration:
from gepa_adk import evolve_sync, EvolutionConfig
config = EvolutionConfig(max_iterations=50)
result = evolve_sync(agent, trainset, config=config)
Note
Synchronous wrapper for scripts and Jupyter notebooks. Automatically handles nested event loops using nest_asyncio when needed.
Source code in src/gepa_adk/api.py
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 | |
evolve_workflow async ¶
evolve_workflow(
workflow: SequentialAgent | LoopAgent | ParallelAgent,
trainset: list[dict[str, Any]],
critic: LlmAgent | None = None,
primary: str | None = None,
max_depth: int = 5,
config: EvolutionConfig | None = None,
state_guard: StateGuard | None = None,
component_selector: ComponentSelectorProtocol
| str
| None = None,
round_robin: bool = False,
components: dict[str, list[str]] | None = None,
session_service: BaseSessionService | None = None,
app: App | None = None,
runner: Runner | None = None,
) -> MultiAgentEvolutionResult
Evolve LlmAgents within a workflow agent structure.
Discovers all LlmAgent instances within a workflow (SequentialAgent, LoopAgent, or ParallelAgent) and evolves them while preserving the workflow structure. Uses shared session state to maintain workflow context during evaluation.
| PARAMETER | DESCRIPTION |
|---|---|
workflow | Workflow agent containing LlmAgents to evolve. Must be SequentialAgent, LoopAgent, or ParallelAgent. TYPE: |
trainset | Training examples for evaluation. Each example should have an "input" key and optionally an "expected" key. TYPE: |
critic | Optional critic agent for scoring. If None, the primary agent must have an output_schema for schema-based scoring. TYPE: |
primary | Name of the agent to score. Defaults to the last LlmAgent found in the workflow (for sequential workflows, this is typically the final output producer). TYPE: |
max_depth | Maximum recursion depth for nested workflows (default: 5). Limits how deeply nested workflow structures are traversed. TYPE: |
config | Evolution configuration. If None, uses EvolutionConfig defaults. TYPE: |
state_guard | Optional StateGuard instance for validating and repairing state injection tokens in evolved component_text. TYPE: |
component_selector | Optional selector instance or selector name for choosing which components to update. TYPE: |
round_robin | If False (default), only the first discovered agent's instruction is evolved across all iterations. If True, all agents' instructions are evolved in round-robin fashion (the engine cycles through agents each iteration). Ignored when components is provided. TYPE: |
components | Optional per-agent component configuration mapping agent names to lists of component names to evolve. When provided, takes precedence over round_robin. Use empty list to exclude an agent. TYPE: |
session_service | Optional ADK session service for state management. If None (default), creates an InMemorySessionService internally. Pass a custom service (e.g., SqliteSessionService, DatabaseSessionService) to persist sessions alongside other agent executions in a shared database. TYPE: |
app | Optional ADK App instance. When provided, evolution uses the app's configuration. Note that App does not hold services directly; pass a Runner for service extraction, or combine with session_service param. TYPE: |
runner | Optional ADK Runner instance. When provided, evolution extracts and uses the runner's session_service for all agent executions (evolved agents, critic, and reflection agent). Takes precedence over both app and session_service parameters. This enables seamless integration with existing ADK infrastructure. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
MultiAgentEvolutionResult | MultiAgentEvolutionResult containing evolved_components dict mapping |
MultiAgentEvolutionResult | agent names to their optimized component_text, along with score |
MultiAgentEvolutionResult | metrics and iteration history. |
| RAISES | DESCRIPTION |
|---|---|
WorkflowEvolutionError | If workflow contains no LlmAgents. |
MultiAgentValidationError | If primary agent not found or no scorer available. |
EvolutionError | If evolution fails during execution. |
Examples:
Default behavior (evolve first agent only):
from google.adk.agents import LlmAgent, SequentialAgent
from gepa_adk import evolve_workflow
generator = LlmAgent(name="generator", instruction="Generate code")
refiner = LlmAgent(name="refiner", instruction="Refine code")
writer = LlmAgent(name="writer", instruction="Write docs")
pipeline = SequentialAgent(
name="Pipeline", sub_agents=[generator, refiner, writer]
)
# Only generator.instruction is evolved across all iterations
result = await evolve_workflow(workflow=pipeline, trainset=trainset)
Round-robin evolution (evolve all agents):
# All agents are evolved in round-robin: generator -> refiner -> writer -> ...
result = await evolve_workflow(
workflow=pipeline,
trainset=trainset,
round_robin=True,
)
Explicit components override (takes precedence over round_robin):
# Only generator and writer are evolved; refiner is excluded
result = await evolve_workflow(
workflow=pipeline,
trainset=trainset,
components={
"generator": ["instruction"],
"writer": ["instruction"],
"refiner": [], # Excluded
},
)
Using custom session service for persistence:
from google.adk.sessions import SqliteSessionService
# Persist workflow evolution sessions to SQLite
session_service = SqliteSessionService(db_path="workflow_sessions.db")
result = await evolve_workflow(
workflow=pipeline,
trainset=trainset,
session_service=session_service,
)
Using App/Runner for existing infrastructure integration:
from google.adk.runners import Runner
from google.adk.sessions import DatabaseSessionService
# Configure Runner with your production session service
runner = Runner(
app_name="my_workflow_app",
agent=pipeline, # The workflow agent
session_service=DatabaseSessionService(connection_string="..."),
)
# Evolution uses Runner's session_service for all operations
result = await evolve_workflow(
workflow=pipeline,
trainset=trainset,
runner=runner, # Services extracted from runner
)
Note
Supports workflow agents (SequentialAgent, LoopAgent, ParallelAgent) with recursive traversal and depth limiting via max_depth parameter. Handles nested structures. LoopAgent and ParallelAgent configurations (max_iterations, etc.) are preserved during evolution. Always uses share_session=True to maintain workflow context (FR-010).
Source code in src/gepa_adk/api.py
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 | |