Core API
api ¶
Public API functions for gepa-adk evolution engine.
This module provides high-level async functions for evolving agent instructions using the GEPA (Generalized Evolutionary Prompt-programming Architecture) approach.
Note
The public API exposes evolve() and evolve_sync() as primary entry points. All async functions should be awaited. For synchronous usage in scripts or notebooks, use evolve_sync() which handles event loop management internally.
SchemaBasedScorer ¶
Scorer that extracts scores from agent's structured output_schema.
When an agent has an output_schema, its output is structured JSON. This scorer parses that JSON and extracts a "score" field.
| ATTRIBUTE | DESCRIPTION |
|---|---|
output_schema | The Pydantic BaseModel schema class from agent.output_schema. Must contain a "score" field. TYPE: |
Examples:
Basic usage:
from pydantic import BaseModel, Field
from google.adk.agents import LlmAgent
from gepa_adk.api import SchemaBasedScorer
class OutputSchema(BaseModel):
score: float = Field(ge=0.0, le=1.0)
result: str
agent = LlmAgent(
name="agent",
model="gemini-2.5-flash",
output_schema=OutputSchema,
)
scorer = SchemaBasedScorer(output_schema=OutputSchema)
score, metadata = await scorer.async_score(
input_text="test",
output='{"score": 0.8, "result": "good"}',
)
Note
Adheres to Scorer protocol. Requires output_schema to have a "score" field. If score field is missing, raises MissingScoreFieldError.
Source code in src/gepa_adk/api.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | |
__init__ ¶
Initialize schema-based scorer.
| PARAMETER | DESCRIPTION |
|---|---|
output_schema | Pydantic BaseModel class from agent.output_schema. TYPE: |
| RAISES | DESCRIPTION |
|---|---|
ConfigurationError | If output_schema doesn't have a "score" field. |
Note
Checks that the schema contains a "score" field during initialization.
Source code in src/gepa_adk/api.py
score ¶
Score an agent output synchronously.
| PARAMETER | DESCRIPTION |
|---|---|
input_text | The input provided to the agent. TYPE: |
output | The agent's structured JSON output. TYPE: |
expected | Optional expected output (not used for schema-based scoring). TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
float | Tuple of (score, metadata) where score is extracted from output JSON |
dict[str, Any] | and metadata contains all other fields from the schema. |
| RAISES | DESCRIPTION |
|---|---|
OutputParseError | If output cannot be parsed as JSON. |
SchemaValidationError | If output doesn't match the schema. |
MissingScoreFieldError | If score field is null in parsed output. |
Examples:
Basic scoring with JSON output:
scorer = SchemaBasedScorer(output_schema=MySchema)
score, metadata = scorer.score(
input_text="What is 2+2?",
output='{"score": 0.9, "result": "4"}',
)
# score == 0.9, metadata == {"result": "4"}
Note
Operates synchronously by parsing JSON and extracting the score field. The expected parameter is ignored for schema-based scoring.
Source code in src/gepa_adk/api.py
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | |
async_score async ¶
async_score(
input_text: str,
output: str,
expected: str | None = None,
) -> tuple[float, dict[str, Any]]
Score an agent output asynchronously.
| PARAMETER | DESCRIPTION |
|---|---|
input_text | The input provided to the agent. TYPE: |
output | The agent's structured JSON output. TYPE: |
expected | Optional expected output (not used for schema-based scoring). TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
float | Tuple of (score, metadata) where score is extracted from output JSON |
dict[str, Any] | and metadata contains all other fields from the schema. |
| RAISES | DESCRIPTION |
|---|---|
OutputParseError | If output cannot be parsed as JSON. |
SchemaValidationError | If output doesn't match the schema. |
MissingScoreFieldError | If score field is null in parsed output. |
Examples:
Async scoring with JSON output:
scorer = SchemaBasedScorer(output_schema=MySchema)
score, metadata = await scorer.async_score(
input_text="What is 2+2?",
output='{"score": 0.9, "result": "4"}',
)
# score == 0.9, metadata == {"result": "4"}
Note
Operates by delegating to synchronous score() since JSON parsing does not require async I/O operations.
Source code in src/gepa_adk/api.py
evolve_group async ¶
evolve_group(
agents: dict[str, LlmAgent],
primary: str,
trainset: list[dict[str, Any]],
components: dict[str, list[str]] | None = None,
critic: LlmAgent | None = None,
share_session: bool = True,
config: EvolutionConfig | None = None,
state_guard: StateGuard | None = None,
component_selector: ComponentSelectorProtocol
| str
| None = None,
reflection_agent: LlmAgent | None = None,
trajectory_config: TrajectoryConfig | None = None,
workflow: SequentialAgent
| LoopAgent
| ParallelAgent
| None = None,
session_service: BaseSessionService | None = None,
app: App | None = None,
runner: Runner | None = None,
) -> MultiAgentEvolutionResult
Evolve multiple agents together with per-agent component configuration.
Optimizes specified components for each agent by targeting the primary agent's output score. When share_session=True, agents execute sequentially with shared session state, enabling later agents to access earlier agents' outputs via template strings.
| PARAMETER | DESCRIPTION |
|---|---|
agents | Named ADK agents to evolve together as dict mapping agent names to LlmAgent instances. Must have at least one agent. TYPE: |
primary | Name of the agent whose output is used for scoring. Must match one of the agent names in the dict. TYPE: |
trainset | Training examples for evaluation. Each example should have an "input" key and optionally an "expected" key. TYPE: |
components | Per-agent component configuration mapping agent names to lists of component names to evolve. If None, defaults to evolving "instruction" for all agents. Use empty list to exclude an agent from evolution. Available component names: "instruction", "output_schema", "generate_content_config". TYPE: |
critic | Optional critic agent for scoring. If None, the primary agent must have an output_schema for schema-based scoring. TYPE: |
share_session | Whether agents share session state during execution. When True (default), uses SequentialAgent. When False, agents execute with isolated sessions. TYPE: |
config | Evolution configuration. If None, uses EvolutionConfig defaults. TYPE: |
state_guard | Optional StateGuard instance for validating and repairing state injection tokens in evolved instructions. TYPE: |
component_selector | Optional selector instance or selector name for choosing which components to update. TYPE: |
reflection_agent | Optional ADK agent for proposals. If None, creates a default reflection agent using config.reflection_model. TYPE: |
trajectory_config | Trajectory capture settings (uses defaults if None). TYPE: |
workflow | Optional original workflow structure to preserve during evaluation. When provided, LoopAgent iterations and ParallelAgent concurrency are preserved instead of flattening to SequentialAgent. Used internally by evolve_workflow(); not typically set directly. TYPE: |
session_service | Optional ADK session service for state management. If None (default), creates an InMemorySessionService internally. Pass a custom service (e.g., SqliteSessionService, DatabaseSessionService) to persist sessions alongside other agent executions in a shared database. TYPE: |
app | Optional ADK App instance. When provided, evolution uses the app's configuration. Note that App does not hold services directly; pass a Runner for service extraction, or combine with session_service param. TYPE: |
runner | Optional ADK Runner instance. When provided, evolution extracts and uses the runner's session_service for all agent executions (evolved agents, critic, and reflection agent). Takes precedence over both app and session_service parameters. This enables seamless integration with existing ADK infrastructure. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
MultiAgentEvolutionResult | MultiAgentEvolutionResult containing evolved_components dict |
MultiAgentEvolutionResult | mapping qualified component names (agent.component format) to their |
MultiAgentEvolutionResult | optimized values, along with score metrics and iteration history. |
| RAISES | DESCRIPTION |
|---|---|
MultiAgentValidationError | If agents dict is empty, primary agent not found, or no scorer and primary lacks output_schema. |
ValueError | If components mapping contains unknown agents, unknown component handlers, or is missing entries for agents. |
EvolutionError | If evolution fails during execution. |
Examples:
Basic usage with per-agent components (API v0.3.x):
from google.adk.agents import LlmAgent
from gepa_adk import evolve_group
generator = LlmAgent(
name="generator",
model="gemini-2.5-flash",
instruction="Generate code based on the requirement.",
)
critic = LlmAgent(
name="critic",
model="gemini-2.5-flash",
instruction="Review the code in {generator_output}.",
)
validator = LlmAgent(
name="validator",
model="gemini-2.5-flash",
instruction="Validate the reviewed code.",
output_schema=ValidationResult,
)
result = await evolve_group(
agents={
"generator": generator,
"critic": critic,
"validator": validator,
},
primary="validator",
trainset=training_data,
components={
"generator": ["instruction", "output_schema"],
"critic": ["instruction"],
"validator": ["instruction"],
},
)
# Access evolved components using qualified names
print(result.evolved_components["generator.instruction"])
print(result.evolved_components["critic.instruction"])
print(result.evolved_components["validator.instruction"])
Exclude an agent from evolution:
result = await evolve_group(
agents={"generator": gen, "static_validator": val},
primary="generator",
trainset=training_data,
components={
"generator": ["instruction"],
"static_validator": [], # Excluded from evolution
},
)
Using custom session service for persistence:
from google.adk.sessions import SqliteSessionService
# Use SQLite for session persistence
session_service = SqliteSessionService(db_path="evolution_sessions.db")
result = await evolve_group(
agents={"generator": gen, "critic": critic},
primary="critic",
trainset=training_data,
session_service=session_service, # Sessions persisted to SQLite
)
Using App/Runner for existing infrastructure integration:
from google.adk.runners import Runner
from google.adk.sessions import DatabaseSessionService
# Configure Runner with your production session service
runner = Runner(
app_name="my_app",
agent=generator, # Any agent from the group
session_service=DatabaseSessionService(connection_string="..."),
)
# Evolution uses Runner's session_service for all operations
result = await evolve_group(
agents={"generator": gen, "refiner": ref},
primary="refiner",
trainset=training_data,
runner=runner, # Services extracted from runner
)
Note
Breaking change in v0.3.x: The agents parameter changed from list[LlmAgent] to dict[str, LlmAgent]. Candidate keys now use qualified names (agent.component) instead of {agent_name}_instruction.
Source code in src/gepa_adk/api.py
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | |
evolve_workflow async ¶
evolve_workflow(
workflow: SequentialAgent | LoopAgent | ParallelAgent,
trainset: list[dict[str, Any]],
critic: LlmAgent | None = None,
primary: str | None = None,
max_depth: int = 5,
config: EvolutionConfig | None = None,
state_guard: StateGuard | None = None,
component_selector: ComponentSelectorProtocol
| str
| None = None,
round_robin: bool = False,
components: dict[str, list[str]] | None = None,
session_service: BaseSessionService | None = None,
app: App | None = None,
runner: Runner | None = None,
) -> MultiAgentEvolutionResult
Evolve LlmAgents within a workflow agent structure.
Discovers all LlmAgent instances within a workflow (SequentialAgent, LoopAgent, or ParallelAgent) and evolves them while preserving the workflow structure. Uses shared session state to maintain workflow context during evaluation.
| PARAMETER | DESCRIPTION |
|---|---|
workflow | Workflow agent containing LlmAgents to evolve. Must be SequentialAgent, LoopAgent, or ParallelAgent. TYPE: |
trainset | Training examples for evaluation. Each example should have an "input" key and optionally an "expected" key. TYPE: |
critic | Optional critic agent for scoring. If None, the primary agent must have an output_schema for schema-based scoring. TYPE: |
primary | Name of the agent to score. Defaults to the last LlmAgent found in the workflow (for sequential workflows, this is typically the final output producer). TYPE: |
max_depth | Maximum recursion depth for nested workflows (default: 5). Limits how deeply nested workflow structures are traversed. TYPE: |
config | Evolution configuration. If None, uses EvolutionConfig defaults. TYPE: |
state_guard | Optional StateGuard instance for validating and repairing state injection tokens in evolved component_text. TYPE: |
component_selector | Optional selector instance or selector name for choosing which components to update. TYPE: |
round_robin | If False (default), only the first discovered agent's instruction is evolved across all iterations. If True, all agents' instructions are evolved in round-robin fashion (the engine cycles through agents each iteration). Ignored when components is provided. TYPE: |
components | Optional per-agent component configuration mapping agent names to lists of component names to evolve. When provided, takes precedence over round_robin. Use empty list to exclude an agent. TYPE: |
session_service | Optional ADK session service for state management. If None (default), creates an InMemorySessionService internally. Pass a custom service (e.g., SqliteSessionService, DatabaseSessionService) to persist sessions alongside other agent executions in a shared database. TYPE: |
app | Optional ADK App instance. When provided, evolution uses the app's configuration. Note that App does not hold services directly; pass a Runner for service extraction, or combine with session_service param. TYPE: |
runner | Optional ADK Runner instance. When provided, evolution extracts and uses the runner's session_service for all agent executions (evolved agents, critic, and reflection agent). Takes precedence over both app and session_service parameters. This enables seamless integration with existing ADK infrastructure. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
MultiAgentEvolutionResult | MultiAgentEvolutionResult containing evolved_components dict mapping |
MultiAgentEvolutionResult | agent names to their optimized component_text, along with score |
MultiAgentEvolutionResult | metrics and iteration history. |
| RAISES | DESCRIPTION |
|---|---|
WorkflowEvolutionError | If workflow contains no LlmAgents. |
MultiAgentValidationError | If primary agent not found or no scorer available. |
EvolutionError | If evolution fails during execution. |
Examples:
Default behavior (evolve first agent only):
from google.adk.agents import LlmAgent, SequentialAgent
from gepa_adk import evolve_workflow
generator = LlmAgent(name="generator", instruction="Generate code")
refiner = LlmAgent(name="refiner", instruction="Refine code")
writer = LlmAgent(name="writer", instruction="Write docs")
pipeline = SequentialAgent(
name="Pipeline", sub_agents=[generator, refiner, writer]
)
# Only generator.instruction is evolved across all iterations
result = await evolve_workflow(workflow=pipeline, trainset=trainset)
Round-robin evolution (evolve all agents):
# All agents are evolved in round-robin: generator -> refiner -> writer -> ...
result = await evolve_workflow(
workflow=pipeline,
trainset=trainset,
round_robin=True,
)
Explicit components override (takes precedence over round_robin):
# Only generator and writer are evolved; refiner is excluded
result = await evolve_workflow(
workflow=pipeline,
trainset=trainset,
components={
"generator": ["instruction"],
"writer": ["instruction"],
"refiner": [], # Excluded
},
)
Using custom session service for persistence:
from google.adk.sessions import SqliteSessionService
# Persist workflow evolution sessions to SQLite
session_service = SqliteSessionService(db_path="workflow_sessions.db")
result = await evolve_workflow(
workflow=pipeline,
trainset=trainset,
session_service=session_service,
)
Using App/Runner for existing infrastructure integration:
from google.adk.runners import Runner
from google.adk.sessions import DatabaseSessionService
# Configure Runner with your production session service
runner = Runner(
app_name="my_workflow_app",
agent=pipeline, # The workflow agent
session_service=DatabaseSessionService(connection_string="..."),
)
# Evolution uses Runner's session_service for all operations
result = await evolve_workflow(
workflow=pipeline,
trainset=trainset,
runner=runner, # Services extracted from runner
)
Note
Supports workflow agents (SequentialAgent, LoopAgent, ParallelAgent) with recursive traversal and depth limiting via max_depth parameter. Handles nested structures. LoopAgent and ParallelAgent configurations (max_iterations, etc.) are preserved during evolution. Always uses share_session=True to maintain workflow context (FR-010).
Source code in src/gepa_adk/api.py
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 | |
evolve async ¶
evolve(
agent: LlmAgent,
trainset: list[dict[str, Any]],
valset: list[dict[str, Any]] | None = None,
critic: LlmAgent | None = None,
reflection_agent: LlmAgent | None = None,
config: EvolutionConfig | None = None,
trajectory_config: TrajectoryConfig | None = None,
state_guard: StateGuard | None = None,
candidate_selector: CandidateSelectorProtocol
| str
| None = None,
component_selector: ComponentSelectorProtocol
| str
| None = None,
executor: AgentExecutorProtocol | None = None,
components: list[str] | None = None,
schema_constraints: SchemaConstraints | None = None,
app: App | None = None,
runner: Runner | None = None,
) -> EvolutionResult
Evolve an ADK agent's instruction.
Optimizes the instruction for a single ADK agent using evolutionary optimization. The agent's instruction is iteratively improved based on performance on the training set.
| PARAMETER | DESCRIPTION |
|---|---|
agent | The ADK LlmAgent to evolve. TYPE: |
trainset | Training examples [{"input": "...", "expected": "..."}]. TYPE: |
valset | Optional validation examples used for scoring and acceptance. Defaults to the trainset when omitted. TYPE: |
critic | Optional ADK agent for scoring (uses schema scoring if None). TYPE: |
reflection_agent | Optional ADK agent for proposals. If None, creates a default reflection agent using config.reflection_model. TYPE: |
config | Evolution configuration (uses defaults if None). TYPE: |
trajectory_config | Trajectory capture settings (uses defaults if None). TYPE: |
state_guard | Optional state token preservation settings. TYPE: |
candidate_selector | Optional selector instance or selector name. TYPE: |
component_selector | Optional selector instance or selector name for choosing which components to update. TYPE: |
executor | Optional AgentExecutorProtocol implementation for unified agent execution. When provided, both the ADKAdapter and CriticScorer use this executor for consistent session management and execution. If None, creates an AgentExecutor automatically. TYPE: |
components | List of component names to include in evolution. Supported: - "instruction": The agent's instruction text (default if None). - "output_schema": The agent's Pydantic output_schema (serialized). When None, defaults to ["instruction"]. Use ["output_schema"] with a schema reflection agent to evolve the output schema. TYPE: |
schema_constraints | Optional SchemaConstraints for output_schema evolution. When provided, proposed schema mutations are validated against these constraints. Mutations that violate constraints (e.g., remove required fields) are rejected and the original schema is preserved. TYPE: |
app | Optional ADK App instance. When provided, evolution uses the app's configuration. Note that App does not hold services directly; pass a Runner for service extraction, or combine with session_service param. See the App/Runner integration guide for details. TYPE: |
runner | Optional ADK Runner instance. When provided, evolution extracts and uses the runner's session_service for all agent executions (evolved agents, critic, and reflection agent). Takes precedence over both app and executor parameters. This enables seamless integration with existing ADK infrastructure. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
EvolutionResult | EvolutionResult with evolved_components dict and metrics. |
| RAISES | DESCRIPTION |
|---|---|
ConfigurationError | If invalid parameters provided. |
EvolutionError | If evolution fails during execution. |
Note
Single-agent evolution with trainset reflection and valset scoring.
Examples:
Basic usage with output_schema:
from pydantic import BaseModel, Field
from google.adk.agents import LlmAgent
from gepa_adk import evolve
class OutputSchema(BaseModel):
answer: str
score: float = Field(ge=0.0, le=1.0)
agent = LlmAgent(
name="assistant",
model="gemini-2.5-flash",
instruction="You are a helpful assistant.",
output_schema=OutputSchema,
)
trainset = [
{"input": "What is 2+2?", "expected": "4"},
{"input": "What is the capital of France?", "expected": "Paris"},
]
result = await evolve(agent, trainset)
print(f"Evolved: {result.evolved_components['instruction']}")
With critic agent:
from pydantic import BaseModel, Field
from google.adk.agents import LlmAgent
from gepa_adk import evolve
class CriticOutput(BaseModel):
score: float = Field(ge=0.0, le=1.0)
critic = LlmAgent(
name="critic",
model="gemini-2.5-flash",
instruction="Score the response quality.",
output_schema=CriticOutput,
)
result = await evolve(agent, trainset, critic=critic)
Evolving output_schema with schema reflection:
from gepa_adk.engine.reflection_agents import create_schema_reflection_agent
# Create schema reflection agent with validation tool
schema_reflector = create_schema_reflection_agent("gemini-2.5-flash")
# Evolve output_schema component
result = await evolve(
agent,
trainset,
critic=critic,
reflection_agent=schema_reflector,
components=["output_schema"], # Evolve schema, not instruction
)
print(f"Evolved schema: {result.evolved_components['output_schema']}")
Using App/Runner for existing infrastructure integration:
from google.adk.apps.app import App
from google.adk.runners import Runner
from google.adk.sessions import DatabaseSessionService
# Configure Runner with your production session service
session_service = DatabaseSessionService(connection_string="...")
runner = Runner(
app_name="my_app",
agent=agent,
session_service=session_service,
)
# Evolution uses your Runner's session_service for all operations
result = await evolve(
agent,
trainset,
runner=runner, # Services extracted from runner
)
Source code in src/gepa_adk/api.py
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 | |
evolve_sync ¶
evolve_sync(
agent: LlmAgent,
trainset: list[dict[str, Any]],
**kwargs: Any,
) -> EvolutionResult
Synchronous wrapper for evolve().
Runs the async evolve() function in a blocking manner. Handles nested event loops automatically (Jupyter compatible).
| PARAMETER | DESCRIPTION |
|---|---|
agent | The ADK LlmAgent to evolve. TYPE: |
trainset | Training examples. TYPE: |
**kwargs | Optional keyword arguments passed to evolve(). TYPE: |
| PARAMETER | DESCRIPTION |
|---|---|
valset | Optional validation examples for held-out evaluation. TYPE: |
critic | Optional ADK agent for scoring. TYPE: |
reflection_agent | Optional ADK agent for proposals (not yet implemented). TYPE: |
config | EvolutionConfig for customizing evolution parameters. TYPE: |
trajectory_config | TrajectoryConfig for trace capture settings. TYPE: |
state_guard | Optional state token preservation settings. TYPE: |
candidate_selector | Optional selector instance or selector name. TYPE: |
executor | Optional unified agent executor for consistent session management across all agent types. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
EvolutionResult | EvolutionResult with evolved_components dict and metrics. |
| RAISES | DESCRIPTION |
|---|---|
ConfigurationError | If invalid parameters provided. |
EvolutionError | If evolution fails during execution. |
Examples:
Basic usage in a script:
from pydantic import BaseModel, Field
from google.adk.agents import LlmAgent
from gepa_adk import evolve_sync
class OutputSchema(BaseModel):
answer: str
score: float = Field(ge=0.0, le=1.0)
agent = LlmAgent(
name="assistant",
model="gemini-2.5-flash",
instruction="You are a helpful assistant.",
output_schema=OutputSchema,
)
trainset = [
{"input": "What is 2+2?", "expected": "4"},
]
result = evolve_sync(agent, trainset)
print(f"Evolved: {result.evolved_components['instruction']}")
With configuration:
from gepa_adk import evolve_sync, EvolutionConfig
config = EvolutionConfig(max_iterations=50)
result = evolve_sync(agent, trainset, config=config)
Note
Synchronous wrapper for scripts and Jupyter notebooks. Automatically handles nested event loops using nest_asyncio when needed.
Source code in src/gepa_adk/api.py
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 | |