State
state ¶
Domain models for Pareto frontier tracking.
Note
This module captures Pareto frontier leaders and candidate state.
FrontierLogger ¶
Bases: Protocol
flowchart TD
gepa_adk.domain.state.FrontierLogger[FrontierLogger]
click gepa_adk.domain.state.FrontierLogger href "" "gepa_adk.domain.state.FrontierLogger"
Protocol for logging frontier update events.
Note
A lightweight logger interface keeps frontier updates consistent.
Examples:
class Logger:
def info(self, event: str, **kwargs: object) -> None:
print(event, kwargs)
logger: FrontierLogger = Logger()
logger.info("pareto_frontier.updated", example_idx=0, candidate_idx=1)
Source code in src/gepa_adk/domain/state.py
info ¶
Emit a structured info log event.
| PARAMETER | DESCRIPTION |
|---|---|
event | Event name identifier. TYPE: |
| PARAMETER | DESCRIPTION |
|---|---|
**kwargs | Structured metadata for the event. TYPE: |
Examples:
Source code in src/gepa_adk/domain/state.py
ParetoFrontier dataclass ¶
Tracks non-dominated candidates across multiple frontier dimensions.
| ATTRIBUTE | DESCRIPTION |
|---|---|
example_leaders | Instance-level: example_idx → leader candidate indices. TYPE: |
best_scores | Instance-level: example_idx → best score. TYPE: |
objective_leaders | Objective-level: objective_name → leader candidate indices. TYPE: |
objective_best_scores | Objective-level: objective_name → best score. TYPE: |
cartesian_leaders | Cartesian: (example_idx, objective) → leader candidate indices. TYPE: |
cartesian_best_scores | Cartesian: (example_idx, objective) → best score. TYPE: |
Note
A frontier stores the best candidate indices per dimension for sampling. The active dimension depends on frontier_type.
Examples:
Source code in src/gepa_adk/domain/state.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | |
update ¶
update(
candidate_idx: int,
scores: dict[int, float],
*,
logger: FrontierLogger | None = None,
) -> None
Update frontier leadership with a candidate's scores.
| PARAMETER | DESCRIPTION |
|---|---|
candidate_idx | Index of the candidate being added. TYPE: |
scores | Mapping of example index to score. TYPE: |
logger | Optional structured logger for leader updates. TYPE: |
Note
Outputs updated leader sets and best scores for instance-level frontier tracking.
Examples:
Source code in src/gepa_adk/domain/state.py
get_non_dominated ¶
Return candidate indices that lead any example.
Note
Outputs the union of all leader sets across example indices.
Source code in src/gepa_adk/domain/state.py
get_selection_weights ¶
Return selection weights based on leadership frequency.
Note
Outputs weights proportional to how many examples each candidate leads, enabling weighted sampling.
Source code in src/gepa_adk/domain/state.py
update_objective ¶
update_objective(
candidate_idx: int,
objective_scores: dict[str, float],
*,
logger: FrontierLogger | None = None,
) -> None
Update objective-level frontier with a candidate's objective scores.
| PARAMETER | DESCRIPTION |
|---|---|
candidate_idx | Index of the candidate being added. TYPE: |
objective_scores | Mapping of objective name to score. TYPE: |
logger | Optional structured logger for leader updates. TYPE: |
Note
Outputs updated objective leader sets and best scores for objective-level frontier tracking.
Examples:
Source code in src/gepa_adk/domain/state.py
update_cartesian ¶
update_cartesian(
candidate_idx: int,
scores: dict[int, float],
objective_scores: dict[int, dict[str, float]],
*,
logger: FrontierLogger | None = None,
) -> None
Update cartesian frontier per (example, objective) pair.
| PARAMETER | DESCRIPTION |
|---|---|
candidate_idx | Index of the candidate being added. TYPE: |
scores | Mapping of example index to score. TYPE: |
objective_scores | Mapping of example index to objective scores dict. TYPE: |
logger | Optional structured logger for leader updates. TYPE: |
Note
Outputs updated cartesian leader sets and best scores for per (example, objective) pair frontier tracking.
Examples:
Source code in src/gepa_adk/domain/state.py
get_pareto_front_mapping ¶
get_pareto_front_mapping(
frontier_type: FrontierType,
) -> dict[FrontierKey, set[int]]
Return frontier mapping for specified frontier type.
| PARAMETER | DESCRIPTION |
|---|---|
frontier_type | Type of frontier to return mapping for. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
dict[FrontierKey, set[int]] | dict[FrontierKey, set[int]]: Mapping from frontier key to set of candidate indices. |
| RAISES | DESCRIPTION |
|---|---|
ValueError | If frontier_type is not a supported value. |
Note
Outputs a mapping with keys appropriate for the frontier type (int for INSTANCE, str for OBJECTIVE, tuples for HYBRID/CARTESIAN).
Examples:
mapping = frontier.get_pareto_front_mapping(FrontierType.INSTANCE)
# Returns: {0: {1, 2}, 1: {2, 3}}
Source code in src/gepa_adk/domain/state.py
ParetoState dataclass ¶
Tracks evolution state for Pareto-aware selection.
| ATTRIBUTE | DESCRIPTION |
|---|---|
candidates | Candidates discovered during evolution. TYPE: |
candidate_scores | Per-example scores. TYPE: |
frontier | Current frontier leader sets. TYPE: |
frontier_type | Frontier tracking strategy. TYPE: |
iteration | Current iteration number. TYPE: |
best_average_idx | Index of best-average candidate. TYPE: |
parent_indices | Genealogy map tracking parent relationships. Maps candidate_idx → [parent_idx, ...] or [None] for seeds. TYPE: |
Note
A single state object keeps frontier and candidate metrics aligned.
Examples:
Source code in src/gepa_adk/domain/state.py
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 | |
__post_init__ ¶
Validate state configuration and initialize averages.
Note
Checks candidate_scores indices are valid and marks frontier_type as initialized for immutability enforcement.
Source code in src/gepa_adk/domain/state.py
__setattr__ ¶
Enforce frontier_type immutability after initialization (T069).
Note
Only frontier_type is protected because it determines the frontier update routing logic in add_candidate(). Other fields (candidates, frontier, candidate_scores) are intentionally mutable to support evolution state updates. Using frozen=True would prevent all mutations, which is too restrictive for evolution state management.
Source code in src/gepa_adk/domain/state.py
add_candidate ¶
add_candidate(
candidate: Candidate,
scores: Sequence[Score],
*,
score_indices: Sequence[int] | None = None,
objective_scores: dict[str, float] | None = None,
per_example_objective_scores: dict[
int, dict[str, float]
]
| None = None,
parent_indices: list[int] | None = None,
logger: FrontierLogger | None = None,
) -> int
Add a candidate and update frontier tracking.
| PARAMETER | DESCRIPTION |
|---|---|
candidate | Candidate to add. TYPE: |
scores | Per-example scores for the candidate. TYPE: |
score_indices | Optional sequence mapping scores to example indices. If None, scores are assumed to be indexed 0, 1, 2, ... (full valset). If provided, scores[i] corresponds to example index score_indices[i]. TYPE: |
objective_scores | Optional aggregated objective scores (required for OBJECTIVE, HYBRID, CARTESIAN). TYPE: |
per_example_objective_scores | Optional per-example objective scores (required for CARTESIAN). TYPE: |
parent_indices | Optional parent candidate indices for genealogy tracking. If None, uses candidate.parent_ids if available, otherwise [None] for seed. TYPE: |
logger | Optional structured logger for frontier updates. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
int | Index of the newly added candidate. |
| RAISES | DESCRIPTION |
|---|---|
ConfigurationError | If objective_scores are required but not provided. |
Note
Outputs the new candidate index after routing to the appropriate frontier update method based on frontier_type.
Examples:
candidate_idx = state.add_candidate(candidate, [0.7, 0.8])
candidate_idx = state.add_candidate(
candidate, [0.7, 0.8], objective_scores={"accuracy": 0.9}
)
Source code in src/gepa_adk/domain/state.py
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 | |
get_average_score ¶
Return average score for a candidate.
| PARAMETER | DESCRIPTION |
|---|---|
candidate_idx | Index of the candidate. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
float | Mean score across examples. |
| RAISES | DESCRIPTION |
|---|---|
NoCandidateAvailableError | If candidate scores are missing. |
Note
Outputs the arithmetic mean of all scores for the candidate across evaluated examples.
Examples:
Source code in src/gepa_adk/domain/state.py
update_best_average ¶
Update best_average_idx based on current scores.
Note
Outputs the candidate index with the highest mean score, or None if no candidates have scores.